Component Architecture of the Tecolote
Framework

Mark Zander!, John Hall', Jim Painter', Sean O’Rourke!

Los Alamos National Laboratory

Abstract. Tecolote is a framework of physics and computer science code
written to support the Blanca Project, a part of the Department of
Energy’s Accelerated Strategic Computing Initiative. The goal of the
project is to provide a stable code development environment in the face
of changing hardware and software technology. Tecolote relies on an-
other toolkit (POOMA) to provide a consistent interface to different
parallel architectures. Tecolote itself aims to facilitate the replacement
and reuse of individual software components within complex simulations.
This paper focuses on the techniques used by Tecolote to implement this
support.

1 Introduction

The Blanca project is part of the Department of Energy’s Accelerated Strategic
Computing Initiative (ASCI), which focuses on science-based nuclear weapons
stockpile stewardship through the large-scale simulation of multi-physics, multi-
dimensional, stockpile-relevant problems. Blanca is the only Los Alamos Na-
tional Laboratory ASCI project written entirely in C++. Tecolote, the under-
lying framework for the development of Blanca physics codes, provides an in-
frastructure for combining individual component modules to create large-scale
applications encompassing a wide variety of physics models, numerical solution
options, and underlying data storage schemes, activating only essential compo-
nents at run-time [2]. Tecolote has been designed to maximize code re-use and
to separate physics from computer science as much as possible, allowing physics
model developers to use POOMA to write algorithms in a style similar to the
problem’s underlying computational physics equations [3].

Tecolote is portable to all ASCI-relevant hardware, making full use of avail-
able parallelism. It supports the rapid implementation of physics models and
their immediate application to problems on the ASCI scale, providing a pow-
erful, flexible, run-time environment that allows users to create and compose
physics codes with various capabilities “on the fly.”

The Tecolote framework is layered on the Parallel Object-Oriented Methods
and Applications (POOMA) framework [3]. This framework contains architec-
ture and parallelism abstractions that allow the user to write parallel physics
codes within the Tecolote framework without worrying about the underlying ar-
chitecture or communications libraries. POOMA provides C++ fields similar to

Fortran-90 arrays, but with additional features including domain decomposition,
load balancing, communications, and compact data storage. POOMA’s unique
capabilities provide the methods developer with powerful tools for expressing
various mesh types and multiple dimensions; this allows application developers
to write mesh- and dimension-independent physics code whenever possible. Com-
bined with the unique design of the underlying Blanca software infrastructure,
this allows us to keep pace with the ever-changing ASCI environment, rapidly
prototype ideas, and build on what others have done, rather than using valuable
time to reimplement the same basic models on different architectures.

2 Approach

The Tecolote Framework supplies an application programmer interface (API)
that supports factorization of applications into components. It is advantageous
to factorize an application to cleanly separate interfaces from implementations,
separate conceptually independent subparts of a program, avoid code duplica-
tion, and maximize code reuse. After factorization, the user may integrate desired
components using techniques supplied by Tecolote. Key concepts supported by
components include separation of computer science from physics in simulations,
implementation independence of component interfaces, and increased run-time
configurability (through an input-file scripting language). This flexible approach
is made possible through the use of C++ inheritance and virtual function poly-
morphism. Not surprisingly, a Tecolote component’s increased modularity comes
at a price. Creation of and communication between components can be some-
what more expensive than the corresponding operations on ordinary C++ ob-
jects. Thus, the granularity of a component must be large enough that these
operations do not impact the efficiency of the code.
Tecolote facilitates factorization through several mechanisms:

1. a uniform run-time data-sharing interface (the DataDirectory) with dynamic
scoping rules;

2. a facility for the run-time description of a component’s type and inheritance
relations (its MetaType) and the registration of this information in a single
type table (the MetaSet); and

3. a means of configuring both data values and control flow without recompi-
lation (the input file scripting language).

In addition to these features, Tecolote supports the separation of computation
and I/0 through the use of “persistents.” By explicitly designating data within
a component class as “persistents,” the user may indicate what parts of a com-
ponent will be available to Tecolote’s generic I/O modules. This separation of
data manipulation from I/O increases component reusability in the context of
changing I/0 formats.

In the remainder of the paper we illustrate the above-described mechanisms
and their interaction through the extended example of a gamma-law equation of
state (EOS) model.

3 Setting Component Parameters - Persistents

In object-oriented programming, I/O methods are generally encapsulated in ap-
plication classes. If one wants to adopt a new I/O format, whether that be binary
instead of ASCII text or eight-digit floating-point output instead of six-digit, ev-
ery application class will need to be modified.

In Tecolote, we separate what is needed for I/O from how I/0 is executed.
The “what” is specified by the application programmer in a persistent list that
contains the class data members that are available for I/O. How I/0 is actually
executed is determined by another component, an I/O module. The I/O module
knows how to extract persistent locations from objects’ MetaTypes and how to
perform some type of I/O operation. There may be several different I/O modules
in a system, each corresponding to different data formats for the same objects.

For example, Gammalaw class members are

REAL pmin; // minimum pressure
REAL gamma; // adiabatic gamma

The persistents are listed outside the class declaration:

template< class C >

BEGIN_PERSISTENT(GammaLaw< C >)
PERSISTENT(REAL, pmin, "pmin")
PERSISTENT(REAL, gamma, "gamma")

END_PERSISTENT

Persistents support factorization by separating I/O modules from applica-
tion modules and by deferring decisions about data initialization until run-time.
Factoring I/O out of application objects ensures consistent input and output for-
matting with essentially no burden on the application programmer, and localizes
changes required to support new data formats.

4 Sharing Fields Between Components - DataDirectory

Two models may use different (or the same) fields to compute their respective
results. Because we want to use virtual-function polymorphism to call the two
models interchangeably, the models must use the same calling sequence in their
respective evaluation functions. To avoid passing different fields in the argument
list of the evaluation functions, we have developed another alternative: passing
a single data structure to the EOS model constructor, which then holds all the
fields needed for a material. This data structure is termed the DataDirectory.
The DataDirectory is actually just like any other Tecolote component, ex-
cept it may have any number of persistents with any names. In contrast, ordi-
nary components may only contain the persistents specified in their persistent
lists. Any Tecolote component may be placed inside a DataDirectory, includ-
ing another DataDirectory. Thus the DataDirectory is hierarchical, much like a

Unix directory structure. Two entries are automatically PUT in a newly cre-
ated DataDirectory to allow traversal of the hierarchy: Root, which points to
the DataDirectory at the top of the hierarchy, and Parent, which points to the
immediate predecessor in the hierarchy of the current DataDirectory.

Figure 4 shows the DataDirectory hierarchy used for a multi-material hy-
dro (only a few POOMA Fields are shown for simplicity). Unlike a Unix file
directory, however, the DataDirectory has scoping similar to C++ inheritance
scoping rules. For instance, when GammalLaw attempts to GET the PhysicsMesh
from the Material DataDirectory, it fails to find it. Therefore the search contin-
ues by examining the Material Set and Root directories, finding the requested
PhysicsMesh in the Root directory. However, while C++ scope is determined
by compile-time class inheritance relations, DataDirectory scope is determined
by run-time object nesting. “Root.gas.Pressure” is used to explicitly specify the
path to the given Field.

The example below, from the Gammalaw class, illustrates the use of the
DataDirectory macro GET:

ScalarField<C>& IntEnergy(
GET("IntEnergy", Mat, ScalarField<C>, (Mesh))

)

The first argument is the name of the requested item, the second is the
DataDirectory in which the search starts (Mat[erial] is a DataDirectory), the
third is the type of the DataDirectory item, and the fourth (if present) represents
the constructor arguments that are needed if the item is not present and must
be added to the DataDirectory.

The DataDirectory improves code factoring because a single data structure
is passed to methods that otherwise would use different calling sequences. It
defers the association of data with a particular model invocation until the actual
invocation, providing generalized parameter-passing without explicit parameter
lists. It enhances integration by supplying a mechanism for transparent data
sharing among independent modules.

5 Building Components from an Input File - Scripting

At the start of its execution, a program must specify both which modules to
use and their initial data values. Tecolote uses a different component for each
option and employs persistents to fill in the data needed by the option. Therefore,
a Tecolote program built from components also must use a methodology that
creates objects from those components and places persistent data in the objects.
We chose to incorporate a scripting language into the Tecolote framework to
accomplish these tasks.

Each object is described by an object name, a MetaType name, and a list of
persistent values. Object hierarchy (or nesting) is indicated by listing one object
in the persistent list of another. The following example shows nested objects
where a GammaLaw is created as the Eos persistent of a Material. An object’s

constructor is called before its persistents are loaded. Therefore an optional
initialize function can be called after an object’s persistents have been loaded to
perform further initialization dependent upon persistent values.

gas = Material(
Eos = GammaLaw(
gamma = 0.5,
pmin = 0.001

),

The input file describes the initial object hierarchy of a program. In addition,
it selects which components will be used and the initial values of their persistents.

In both debugging and actual use, it is desirable to change the control flow of
a program without rebuilding the entire code. Tecolote provides this flexibility
by allowing the user to specify higher level function sequences in the input file.
The necessary facilities are already provided by Tecolote and may be extended
by an application programmer through a MetaType that maps methods and
functions into function objects that are usable from the input file.

The language, based on Backus’ FP language [1] and Robinson’s IFP [4], in-
cludes program-forming operations (PFQ’s), basic objects and elementary oper-
ations. PFQ’s include control structures such as branching (If), looping (While),
and sequences (Compose). Examples of basic objects are List, number, and
string. Elementary operations that act on basic objects might include arith-
metic, comparison, and collection functions such as concatenate and length. As
in FP, users may define new objects and functions, but not new PFO’s.

6 Registering a Component with Tecolote - MetaTypes

In most applications, a module must directly reference other modules with which
it interacts. This requirement obstructs factorization and prevents the applica-
tion programmer from deferring module interactions until run-time. In addition,
it is difficult to replace modules that are referenced in multiple locations within
the program. In contrast, Tecolote components are registered only once in a
table, the MetaSet, that contains all the program components (see Figure 6).
Individual components interact indirectly through this table, promoting compo-
nent independence.

A module is registered as a component with Tecolote by using a MetaType
which, when invoked, automatically registers itself with the MetaSet. The MetaType
for a class has a name in the MetaSet, holds the persistent list for that class,
can create and initialize that class, carries its C++ type information to run-
time, and can convert the MetaType from or to a single base class. An object’s
MetaType is an object in its own right, much like Java’s “Class” class [XXX:
ref?].

Many languages create a unified type hierarchy by having a single base class
from which all classes are derived (Java’s Object class, for example). Tecolote

classes, on the other hand, do not share a common base class. Relaxing this
restriction allows classes not written for the framework (such as STL container
classes and C++ basic types) to be incorporated into Tecolote. Non-Tecolote
classes are incorporated into the Tecolote type system by describing their basic
features and their persistents in a MetaType.

In the example below, the GammaLawjCell; class is registered with the
framework. The generic MetaTecolote class can create a Gammalaw object only
if the GammalLaw class has a constructor taking a DataDirectory* and a String
as arguments. A class is said to be Tecolote-aware if it has such a constructor.
While a class should be Tecolote-aware to be used to the fullest extent in the
framework, this is not a requirement for its use. The class GammaLaw;Cell; is
given the name “GammalLaw” in the MetaSet and has the base class Eos. The
MAKE_PERSISTENTS macro registers the persistent information defined for
the GammaLaw class.

#include "GammaLaw.hh"
static MetaTecolote<GammalLaw<Cell>, Eos>
GammaLawMeta ("GammaLaw", MAKE_PERSISTENTS (GammalLaw<Cell>));

In addition to providing indirection between model components, the MetaSet
separates I/O modules from physics modules in a program: I/O modules have
knowledge of other modules only through the MetaSet, while physics modules
have no knowledge of I/O modules. This separation enables us to rewrite I/O
modules and physics modules completely independently. The independent I/0
modules illustrated in Figure 6 are the Parser, which reads an input file to create
new component objects, and a Printer, which prints existing component objects
to an output file.

The MetaType and MetaSet are key elements for supporting factorization in
Tecolote. MetaTypes turn C++ classes into components and the MetaSet may
be searched for any component in an application program, providing a level of
indirection between components.

7 Conclusion

By using the various techniques in the Tecolote Framework, the Los Alamos
National Laboratory’s Blanca Project has been able to integrate a wide variety
of physics packages into codes with relative ease. We have added new physics
models by modifying the code only in the MetaSet and without having to rewrite
any of the code’s I/O modules. Complex data sharing is accomplished by the
DataDirectory, which allows us to avoid complex calling sequences or global
variables. By deferring the choice of components until they are specified in the
input file at run-time, we ensure maximum flexibility in the code. The combined
benefits from this component architecture approach ensure a far simpler and
faster method for adding new physics modules into a program.

Future inquiries will be directed towards the effects of Tecolote’s component
architecture and functional scripting lanugage. Potential areas of investigation

include: application programming methodologies in a functional scripting lan-
guage; the high-level expression of parallelism in the component architecture,
including consideration of the effects of the functional nature of the input file
language; and the applicability of a funcional language in specifying object hi-
erarchies and application control flow.

References

1. J. Backus. Can Programming Be Liberated from the von Neumann Style? A Func-
tional Style and its Algebra of Programs. In Communications of the ACM, pages
613-641, August 1978.

2. K.S. Holian, L.A. Ankeny, S.P. Clancy, J.H. Hall, J.C. Marshall, G.R. Mcnamara,
J. W.Painter, and M.E. Zander. TECOLOTE, an Object-Oriented Framework for
Hydrodynamics Physics. In Proceedings of the Conference on Numerical Simula-
tions and Physical Processes Related to Shock Waves in Condensed Media, Oxford,
England, September 1997.

3. J. V. W. Reynders, J. C. Cummings, P. J. Hinker, M. Tholburn, S. Banerjee,
M. Srikant, S. Karmesin, Atlas S., K. Keahy, and W. F. Humphrey. POOMA:
A Framework for Scientific Computing Applications on Parallel Architectures. MIT
Press, 1996.

4. A. Robison. Illinois functional programming: A tutorial. BYTE, pages 115-125,
February 1987.

